£

Electroanalysis, 5(1993) 627-639

REVIEW ARTICLE

Theory of Ultramicroelectrodes

Koichi Aoki

Department of Applied Physics, Faculty of Engineering, Fukui University, 9-1, Bunkyo 3-chome,

Fukui-shi 910, Japan
Received October 27, 1992,

ABSTRACT

This review describes the theory of mass transport at ultramicroelectrodes that have broken through
several experimental limitations of electrochemical measurements. On the basis of the mathematical
miniaturization, the ultramicroelectrode can be classified into a point electrode, a line electrode, and a
plane electrode. Electrochemical features of these electrodes are described from a viewpoint of the
mass transport, especially due to diffusion. Theoretical difficultv in ultramicroelectrodes is mainly due
to nonuniform current distribution on the electrode surface. The expression for the time-dependent
diffusion-controlled current at any electrode geometry, which predicts the current responding to any
potential variation, is presented. Conditions of the steady-state current are specified. The diffusional
characteristic functions at a disk, a cylinder, and a band are presented, from which the theories of
various electrochemical techniques can be derived analytically. Voltammetric peak currents at several
ultramicroelectrodes are compared in light of the diffusional edge effect. The properties of the steady-
state current are described at a disk, a band array, a ring, and a recess electrode. The theory is
extended to the current-potential curves complicated by the heterogeneous kinetics at a disk, a

cvlinder, and a band-array electrode.
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INTRODUCTION

Miniaturization sometimes creates new technological
fields, such as the IC technology and micromachines. This
is not an exception in the electrochemical field. Minia-
turization of electrodes has broken through several ex-
perimental limitations of electrochemical measurements
[1,2], has provided considerable new information [2,3],
and has been useful for exploring new environments. It
is now a standard and inevitable tool and plays a signif-
icant role [4] in a rapid electrochemical measurement in
resistive solution, spatial resolution analvsis, a sensor of
in vivo measurements, and electrode kinetics under the
steady-state condition. In order to reveal characteristics
of ultramicroelectrodes, it is necessary to realize mass
transport at the electrodes. This review describes, in
general, the concept and the theory of mass transport at
ultramicroelectrodes. Since this review aims at the the-
oretical comprehension of ultramicroelectrodes, various
numerical techniques are not presented here.

Concept and Properties of Ultramicroelectrodes

Although the definition of the ultramicroelectrode is am-
biguous, electrodes whose characteristic length is less
than 20 wm are often called ultramicroelectrodes. They
also involve an electrode with micrometer length in one
direction and with millimeter length in another direc-
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tion, exemplified by a microcvlinder electrode. Even one-
dimensional miniaturization can exhibit interesting
properties of ultramicroelectrodes. Thus, a reasonable
definition is that the ultramicroelectrode provides the
noble information which cannot be obtained at a con-
ventionally sized electrode when at least one-dimen-
sional size or local geometry of the electrode is made
small.

As an electrode is miniaturized, the following phe-
nomena are observed:

1. Mass transport of the electroactive species is varied
from the linear diffusion normal to the electrode sur-
face to the two- or three-dimensional diffusion:

the current becomes smaller but is not proportional
to the electrode area; and

3. the current density increases.

I

These properties were early been appraised negatively,
because (a) the mass transport is complicated, (b) the
S/N ratio, in comparison with external noises, is small
owing to the small current, (¢) kinetic complications are
more involved in the current, and (d) there is technical
limitation of manufacturing the electrode. These demer-
its, however, were overcome by the advantages that they
may include new data. The advantages, depending on
electrode geometry, are summarized as follows:
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1. a steady-state or quasi-steady state current is obtained
~even in a quiescent solution;

the steady-state current allows us to make chemical
and electrochemical kinetic measurements;

3, the current-potential curve with little deformation
renders rapid measurements;

4. highly accurate measurements are possible in non-
polar solvents or resistive solution without deliber-

ately adding supporting electrolytes:

local concentration profiles and localized analytes can
be determined, exemplified by a scanning vibration
microscope and a physiological sensor in living tis-
sues; and

6. arrangement of ultramicroelectrodes provides new
functionality owing to reactions of electroactive spe-
cies.

I

W

At present, some of these properties have been eluci-
dated in detail by the theory.

Classification of Ultramicroelectrodes

If characteristic length of a ultramicroelectrode is made
infinitesimally small, it tends either to a point, a line, or
a plane. On the basis of this mathematical miniaturiza-
tion, ultramicroelectrodes can be classified into a point
electrode, a line electrode, and a plane electrode. The
classification will be consistent with the electrode be-
havior through the mass transport mode, as shown in
the next section. Although real ultramicroelectrodes are
deviated from the three mathematical geometries, the
classification is helpful to predict the basic behavior. Ta-
ble 1 shows characteristics of the three electrodes.

The point electrode looks like a spot with vague ge-
ometry at a long distance from the electrode. The con-
centration profile and potential distribution in the so-
lution are of spherical form. For a long time, they become
the steady state and, hence, yields the steady-state cur-
rent. This current is proportional to the characteristic
length (radius) of the electrode. A typical point elec-
trode is a disk electrode inlaid on an insulating plane.

A feature of the line electrode is two-dimensionally
concentric distributions of the concentration and the po-
tential. Since the line electrode is of the order of mil-
limeters or centimeters in the direction of the line, the

TABLE 1 Characteristics of the Three Kinds of Electrodes

current has similar order to that of the large electrode.
Therefore, it is useful for an analytical tool. Indeed, a
carbon fiber working as a cylinder electrode has played
a vital role in a detector of in vivo measurements.

There is a ultrathin ring electrode that shares char-
acteristics of the point electrode and the line electrode.
The ring electrode looks like a point from a position
very far from the electrode, whereas it looks like a curved
line near the electrode. It has the steady-state current
because of the feature of the point electrode.

A plane electrode of interest is a microarray elec-
trode, which is composed of point electrodes and line
electrodes on a planar insulator. It is versatile in func-
tionality by designing the geometrical arrangement. A
mode of mass transport depends basically on whether
elementary electrodes are a point or a line electrode.

History of the Theory

A target of the theory of the ultramicroelectrode is to
evaluate current or potential responding to electro-
chemical stimulation. Factors determining the current or
the potential are the charge transfer rate, chemical com-
plications, and mass transport, including diffusion, elec-
tric migration, and convection. The diffusion problems
have been investigated most extensively because they re-
flect well the geometry of ultramicroelectrodes. Some of
them are classical and, hence, can be found in mono-
graphs of thermal conduction of heat [5], electrostatics
[6], and diffusion of mathematics [7].

The most classical and well-known theory is the
steady-state current at a spherical electrode [8]. This is
essentiallv equivalent to a problem of the potential dis-
tribution around an isolated conducting sphere [6]. The
diffusion problem at the disk electrode, called the We-
ber problem [9], was solved by Tranter [10], Grigull [11],
and Saito [12]. A number of investigations on ultrami-
croelectrodes have been focused on the disk electrode,
partly because it exhibits most strongly properties of ul-
tramicroelectrodes and partly because it can be fabri-
cated closely to the model.

When a potential is applied to the electrode, the re-
sponding current decreases to the steady state. Such
transient behavior has been predicted theoretically by
Aoki and Osteryoung [13]. The transient currents at a short
time [14,15] and at a long time [16,17] have been ex-

Electrode Point Line Plane

Concentration profile Sphere Cylinder Plane

Basic diffusion functions Legendre and Bessel Bessel Exponential®

Current at a long time Steady state Quasi-steady state Tending to zero®

The first two terms of (a/D)f(1) (w8)” "% + 1P (@)~ + (from 0.4 to 0.5) (m6)"

Examples disk cylinder disk array
hemisphere band band array

At a large planar electrode
"8 = Dt/&.




amined by some numerical techniques. The theory has
been extended into linear sweep voltammetry [18],
chronopotentiometry [19], square-wave voltammetry [20],
and so on. The disk electrode is influenced by the charge
transfer rate owing to the diffusional edge effect, the the-
ory of which will be described in a later section.

The theory of cvlinder electrodes has been mostly
based on the approach of the heat conduction of cylin-
drical solids developed by Jaeger and Clarke [21]. Since
it covers, however insufficiently, the quasi-steady state at
readilv available cvlinder electrodes, such as carbon fi-
ber electrodes, it has been re-examined in electrochem-
ical applications [22].

The ultramicroband electrode has the possibility of
being miniaturized to a few nanometer size if the thin
laver technology is applied to the fabrication. Saito de-
rived the expression of the diffusion-controlled current
at band electrodes on the assumption of the steady state
[12]. It is a loss of physical meaning, however, to make
the assumption of the steady state in the two-dimen-
sional space. Oldham derived expressions for a current-
time curve at verv thin electrodes and applied it to the
microband electrode [23]. Aoki et al. derived analytical
equations for chronoamperometry [24].

Microarray-disk electrodes have been proposed as a
model electrode partially blocked by oxide film or ad-
sorption [25], and some approximate methods of esti-
mating the current have been presented [26,27]. Quan-
titative analysis of microarray-band electrodes is the
steady-state current at an interdigitated microarray elec-
trode [28].

Currents controlled by migration or chemical com-
plications have not been well studied vet because they
depend largely on experimental conditions. A svstem-
atically, theoretical approach of the current may be pes-
simistic even in the future.

COMPREHENSIVE THEORY
Mass Transport

Mass transport at ultramicroelectrodes is caused by dif-
fusion, electric migration, and convection of electroac-
tive species, as at large electrodes. Since the convection
often suppresses most advantages of ultramicroelec-
trodes, it is bevond the main subject, except the diffu-
sional edge effect [29] or analvtical applications at mi-
croband arrav electrodes in a channel flow [30].

Mass transport by diffusion and migration is brought
about by local gradient of electrochemical potential of
the electroactive species. Let the concentration of the
electroactive species i be ¢, the diffusion coefficient be
D;, the number of charge be z; and the inner potential
in the solution be . Then the transport rate /; is given
by the Nernst-Plank equation [31]

Ji = —D;grad ¢, — (z,F/RT)Dg, grad ¢ (1)

This is independent of electrode geometry. Substituting
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Equation 1 into the equation of continuum dc,/ot = —div
J; vields

dc;
 _ DAc, + (z,F/RT)D, (grad ¢;) - (grad ¥)

dt
+ (z,F/RT)DcAY  (2)

where “-" denotes an inner product. This is a basic equa-
tion of time-dependent mass transport. Since explicit
forms of the Laplacian and the gradients in Equation 2
depend on the geometry of an electrode and its support
as well as the arrangement of a reference and a counter
electrode, Equation 2 involves geometrical information
implicitly through given boundary conditions.

Equation 2 can be classified into three categories,
depending on the magnitude of grad .

1. When concentrations of supporting electrolytes are
high enough to vield uniform potential distribution
(grad ¢ = 0), Equation 2 is reduced to Fick's second
law. Geometrical effects are involved only in Ac,

. When grad ¢ varies with concentrations of supporting
electrolytes regardless of those of the electroactive
species, the Laplace equation (4y¢ = 0) holds under
the boundarv conditions of cell and electrode ge-
ometry. Then grad ¢ in Equation 2 can be evaluated
bv solving the Laplace equation, being independent
of Equation 2.

3. When concentrations of supporting electrolytes are so
small that the electric neutrality breaks down in the
vicinity of the electrode, the Laplace equation should
be replaced by the Poisson equation given by Ay =
—(1/es€.) X zFc,, where €, and e, are, respectively,
the permittivity of vacuum and the relative permittiv-
ity of solution. The concentrations of electroactive
species are determined with both Equation 2 and the
Poisson equation. Since the Poisson equation in-
cludes z,, the concentration profile varies with mech-
anisms of electrode reactions. For example, the con-
centration profile for O + 2e” =R is different from
that for O°" + 2e” = R. Thus, it is difficult to estab-
lish systematic theory of the migration effects [32—34].

-2

Solution of Time-Dependent Diffusion Equation
(grad y = 0)

The time derivative in Equation 2 can be solved by the
Laplace transformation with respect to time, regardless
of grad ¢. The Laplacian takes different forms varying
with coordinates, on which the characteristics of ultra-
microelectrodes are reflected. The coordinates are often
selected so that the largest time variation of the diffusion
laver is expressed by only one dependent variable. For
example, the best choice at a sufficiently long cvlinder
electrode is the cylindrical coordinate consisting of the
radial length (» in Figure 1A) and the rotation around
the axis (8’ in Figure 1A). Since @' has no influence on
the equiconcentration contour, the current density is
uniform over the electrode surface.

For the disk electrode, the diffusion layer at a short
time is almost parallel o the electrode surface, except
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FIGURE 1. Coordinates appropriate to (A) a cylinder, (B) a disk, (C) a band, and (D) a disk-array electrode.

the edge, and hence, z (Figure 1B) in the cvlindrical co-
ordinate is a predominant variable. The radial length r,
is a secondary variable contributing to the edge effect.
Therefore, it is predicted that the edge effect is ex-
pressed bv an ascending expansion of r, or the radius.
When the diffusion laver grows to a hemicircle in a long
time electrolysis, it is represented mainly by the radial
distance in the polar coordinate (7, in Figure 1B) rather
than the cvlindrical coordinate. A secondary variable 6’
in Figure 1B works as location of the electrode on the
insulator (8' = m/2). At the microband electrode, the
predominant variable in a short time is y in the two-
dimensional Cartesian coordinate (Figure 1C). In a long
time, ¥ is replaced by r in the two-dimensional cylin-
drical coordinate.

A functional form is, in general, closely related to a
coordinate. When an electrode possesses two coordi-
nates to be best selected, the electrode behavior is ex-
pressed by two functional forms depending on the time.
For example, the diffusion currents at the disk electrode
in a short time and a long time, respectively, are given
by the Bessel functions and Legendre functions.

The best choice of the coordinates depends on an
expected form of the diffusion layer rather than elec-
trode geometrv. This is the case with the numerical cal-
culation of initial-boundary value problems of the mass
transport. Formally equispatial discretization in the finite
difference method sometimes provides large errors or
astronomically long computation time. Intelligent dis-
cretization takes unit cells along predicted equiconcen-
tration contours.

Diffusion-Controlled Current Response

In the classical theory of electrochemical techniques de-
veloped by Matsuda and Avabe [35], a solution of the
diffusion equation is Expressed by the relation berween
the concentration and the flux at the electrode surface
without imposing electrochemical boundary conditions.
Therefore, the diffusion problem has been able to dis-
criminate against the electrochemical techniques, such
as linear sweep voltammetry and pulse voltammetry. A
similar method was applied to hydrodynamic voltam-
metry at a rotating disk electrode and has extended its
applicability. This method is based on the uniform ac-

cessibility or uniform current distribution at the elec-
trode. Unfortunately, ultramicroelectrodes rarely pro-
vide uniform current distribution owing to the edge effect

When the charge transfer rate is so rapid that the
Nernst equation holds, the concentration at the elec-
trode surface is controlled by the electrode potential and,
hence, takes a uniform value. If the average current is
used instead of the nonuniform local current density, it
may be related to the surface concentration or the elec-
trode potential. For this purpose, the initial-boundary value
problem in the three-dimensional diffusion space has been
solved [36] for anv electrode geometrv by means of a
technique of the Green function. The total current 7 is
then expressed by the convolution integral of both dif-
fusional response function fi¢) and the time-dependent
electrode potential £(1), as follows:

f—nFA*—J“ fe = u) du
- @ ) 1 + exp [— nRE@) — E*')/RT]
(3)

where ¢* is the bulk concentration of the electroactive
species, A is the geometrical area of the electrode, and
E™' is the formal potential of the redox reaction. The
function f{#) depends on electrode geometry. For a large
planar electrode, it is given by fir) = VD /mt. According
to the theoretical work by Oldham [37], i) at any smooth
electrode is given by

fit) ="V D/mt + C + terms of order #'%, 1, P> (4)

where C is a constant. Carrving out differentiation of
Equation 3 vields

S0
1 + exp [— nF(E(0) — E*)/RT]

d'E 2
+4RTJ‘( )j(u)*;ech [—(E(r u) E‘“}] }

(5)

If a functional form of f(¢) is known, the time-dependent
current can be evaluated from the integration of Equa-
tion 5 for a given potential-controlled electrochemical
technique. For the case of a potential step, df/dr in
Equation 5 should be treated as a delta function.

I = nFAcC* {




Equation 5 indicates that the diffusional character-
istics [ fiz)] are independent of the electrochemical tech-
niques [E(¢)] for the reversible case. In other words, a
subject of the mass transport is segregated from the elec-
trochemical boundary conditions, as is the classical the-
orv. The segregation is, however, limited to the rapid
charge transfer process.

Steady-State Current

The steady state for diffusion-controlled mass transport
is established when (a) a redox oxidized species is re-
duced at an electrode and is subsequently oxidized at
the adjacent electrode or (b) the diffusion laver is in the
form of a sphere or a part of a sphere. In either case,
the diffusion equation is reduced to the Laplace equa-
tion with respect to c,

Case (a) requires that both anode and cathode are
within a common diffusion laver. The time of establish-
ing the steady state is of the order of /D, where [ is
an average distance between the two electrodes. The
boundarv conditions are complicated by the location of
the two electrodes. When the concentration profile is two-
dimensional, the Laplace equation is often solved by the
use of the theory of complex variables [38]. Especially
when the diffusional space is surrounded with polvgonal
insulators including the infinite boundary, the mapping
of the complex variables, called Schwarz-Christofell
transformation [39], reduces the cell configuration to a
simple cell composed of parallel electrodes with the same
size. An interdigitated array electrode with alternately ar-
ranged anodes and cathodes is an example of this trans-
formation [28].

The superposition principle of the coulombic force
is helpful for estimating concentration profiles. It has been
applied to evaluating the capacitance [40] and diffusion-
controlled current [41,42] at ultrathin microring elec-
trodes. It is, however, difficult to determine the mirror
image of the real electrode geometry, and hence, the
geometry is sometimes approximately deformed, ex-
emplified by the scanning electrochemical microscope
for detecting local corrosion [43].

There is no steady-state solution of the one- or the
two-dimensional diffusion with infinite boundaries [case
(b)]. A steady-state current exists only in the spherical
diffusion [8°¢,/ar" + (2/r)ac,/ar = 0. The flux (I/nF)
of the electroactive species is then balanced with the sum
of the fluxes J across a spherical diffusion laver in radius
Ry much larger than the electrode length, ie., I/nF =
4mRzJ. This is demonstrated as follows: If the equation
of continuum under the steady state (dc,/ot = —div J,
= 0) is expressed by the angle-independent polar co-
ordinate, we have

a(riy)
ar

The solution is obviously »°J = Constant, and hence. the
current is also constant.

The steady-state current at the point electrode is
proportional to the one-dimensional length of the elec-

=0 (6)

Nl
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trode, rather than the electrode area. This fact is dem-
onstrated as follows. The flux in the solution is propor-
tional to »~~ according to the relation r°] = Constant.
Since the flux is equivalent to grad ¢; or since the con-
centration profile is given by the integral of the flux, the
concentration has »~' dependence. From the boundary
conditions in the bulk and on the electrode surface, the
concentration can be approximately expressed by ¢ =
c*(1 — r,/r), where r, denotes a one-dimensional length
of the electrode. The flux at the electrode is then given
by

D[a':!;ar}m the electrode ﬂ{:*/'r] (?}

Since the area of the electrode is of the order of r3, the
total current is proportional to Dc*ry. This is a survey of
the proportionality with the one-dimensional length.

DISK ELECTRODE
Steady-State Current

The diffusion-controlled current 7, under the steady state
at the disk electrode in radius @ has been evaluated [10-
12] by the method of the Bessel expansion and is ex-
pressed by

I, = 4nFc*Da (8)

In order to grasp correspondence between Equation (8)
and the Courell equation, /; is assumed to be equated
with (m@*nFc* VD /mt. The time in the Courell equa-
tionisthent =02msfora=1pumandD = 107> cm®
s~ This is too short to be observed by conventional
techniques, and hence, extraordinary high current den-
sity is established under the steady state.

Let us compare Equation 8 with the hemispherical
electrode with the same radius. Since the steady-state
current at the hemispherical electrode is expressed by
2mnFc*Da, it is 1.57 times larger than the current at the
disk electrode. The ratio (twice) of the area is not re-
flected to the steady-state current, as has been demon-
strated in the previous section.

The current density 7 at any radius r on the disk elec-
trode is given by (9]

j=Q@Q/amFc*D/V (@ — r®) (9)

The current density at the edge is infinite because of
sharp bending of the current lines near the edge. The
infinite current density is compensated with finite values
of the heterogeneous electrode reaction rate in the real
system.

Time-Variations of Current

The evaluation of the decay of the current responding
to a large potential step was a significant target of the
theory of the ultramicroelectrode. Flanagan and Mar-
coux were first to evaluate the current decay curve bv
the digital simulation [14). Aoki and Osteryoung derived
analytical equations for the current for a short time and
a long time [13] by the Wiener-Hopf technique [44]. Since
this approach is too sophisticated to be explained, only
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the result is described here. The transient current / is
expressed by the series expansion of the dimensionless
time 7 = 4Dt/a” and is give by

[ = 4nFc*Dafl + 0.718357" /% + 0.056267 > (10)
— 0.006467 % ..} (for large values of 7)

I = 4nFe*Da{(m/47) V% + w/4 + 0.0947/% ..} (11)
(for small values of 7)

These two curves overlap in the domain 0.82 < 7 < 1.44.
Equation 10 is the expansion due to the polar coordi-
nate, whereas Equation 11 is due to the cylindrical co-
ordinate.

A more convenient expression has been obtained
empiricallv by Shoup and Szabo [17] by means of the
numerical computation of the boundary value problem.
The equation that is modified to be applicable to Equa-

tion (5) is
=1+ (1)
+1+ ——1
wDt w

D
ﬂﬂ=—{
a
X expl —0.591::-’;5:1} (12)

Since this holds for any value of 7, it can be used for
quantitative analysis in various electrochemical tech-
niques.

Figure 2 shows the plot of (a/D)f(t) against log (Dt/
a’). Tt also shows variations of the diffusional response
functions at a large planar electrode (\VD/#t) and at a
hemispherical electrode, given by

ﬂr}-‘E( -
a8 \\/ Dt

Comparison of these curves indicates that the current
density (fi)) at the disk electrode is larger than that at
the hemispherical electrode near the steady-state do-
main and much larger than that of the planar electrode.
The difference is due to the diffusional edge effect.

+ 1) (13)

Linear Sweep Voltammetry

Theoretical expressions of linear sweep voltammograms
or cvclic voltammograms can be derived from Equations
(5) and (12) and the condition of the potential sweep,
E = E, + vt, where E, is the initial potential and v is the
sweep rate. Taking the initial potential to be sufficiently
negative and introducing the dimensionless potential,
defined by

{=nFE—-E")/RT (14)
we have the expression for the anodic current [18]

SRR A . i_)
f—{4nF¢ﬂa}16£ {\/ﬂ;HJr(w 1
0.391 J&

exp[ \/;]}SE{:h (2 5 )dx (15)

FIGURE 2. Variations of diffusional response functions
(a/D)R1) for (a) a disk, (b) a hemisphere, (c) a cylinder,
(d) a band, and (e) a large planar electrode, where a for
the band electrode means w/2.

where p is a ratio of the potential sweep rate (nF/RT)av
to the diffusion rate D/a, given by

p = \V/nFa’v/RTD (16)

The dimensionless current-potential curve (//nFc*Da
versus {) is a function of only p.

For large values of p or @\/v, Equation (15) is iden-
tical with the equation for linear sweep voltammograms
at a large planar electrode [35]. On the contrary, Equa-
tion (15) for small values of p or a\/v approaches the
steady-state solution given by Equation (8).

It is the peak or the maximum current, /,, that char-
acterizes quantitatively the voltammogram. The peak
current has been evaluated numerically from Equation
(15) as a function of p and is expressed empirically by
18]

I, = 4nFc*Daf0.34e™"* + 0.66
— 0.13¢7""* + 0351p} (17)

Figure 3 shows the plot of the average density of the
peak current (7, = pf(mﬂz)) against p. Since the average
density for p > 2 has approximately linear relation to p,
the exponential term in Equation (17) can be negligible.
Thus, we have

I, = c*{2.64nFDa + 1.4n°°F*”a* \/D/RT} (18)

The first term indicates the steady-state solution, except
the coefficient, whereas the second is the peak current
at a large planar electrode. Therefore, [, can be ex-
pressed conceptually bv the sum of the steadyv-state wave
and the conventional voltammogram.
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FIGURE 3. Dependence of peak current density, j,, of
linear sweep voltammogram on the dimensionless
variable p at (a) a disk, (c) a cylinder, (d) a band, and
(e) a large planar electrode, where a for the band
electrode means w,/2.

Kinetics of Charge Transfer Reaction under the
Steady State

Conventional techniques of fast electrode kinetics are ac
impedance and pulse methods with short time re-
sponses. Alternatively, the kinetic work under the steady
state can be made with hvdrodynamics at a rotating disk
electrode (RDE) [45]. In either case, a kev of the kinetic
study is to enhance the current density by the short time
measurement or the vigorous convection. Since the steady-
state current at a disk electrode 1 um in diameter is so
high that it corresponds to the Cottrell current at 0.2 ms,
it mav be subjected to the kinetic effect.

According to Equation (9), the current density at the
edge is infinite. This is unrealistic, and hence, the cur-
rent always involves the effect of the charge transfer rate.
Discussion on the relation of the infinite current density
with the charge transfer rate has also been found in the
hvdrodynamic voltammetry at the rotating ring electrode
(46] and at the channel electrode [47).

The problem of the steady-state diffusion mixed with
the charge transfer rate has been first solved analytically
by use of the combination of the Mellin transformation
and Wiener-Hopf method by Acki et al. [48]. Bond et al.
[49] and Fleischmann et al. [50] derived analvtical equa-
tions by applving Bessel integrals. Barker and Verbrugge
[51] obtained numerical solutions bv means of elliptic
integrals [52]. Although these four approaches are dif-
ferent in apparent expressions and derivation, they were
essentially the same. Oldham and Zoski compared the
latter three results [53].

We consider the kinetic equation of the Butler-Vol-
mer tvpe with formal rate constant £7', and the cathodic
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and the anodic transfer coefficients, @ and B, respec-
tively. When the diffusion coefficients of the oxidized and
the reduced species have a common value and the re-
duced species is present in the bulk, the current-poten-
tial curve is approximated [53] bv

I(1+e% /{ 2\ + 12}
=A/ A+ —— (19)
I, A+ A

X = i— {e™* + &7} (20)

where

This can be applied to simulation of the current-poten-
tial curve from known values of the kinetic parameters
and the electrode radius.

Of practical significance is the determination of the
kinetic parameters from observed current-potential curves.
Aoki et al. [48] have proposed a method of a modified
log-plot by evaluating empirically the inverse function of
the dimensionless current. The log-plot is given by

RT (1= /L) + e DM

E=E— E-E’}ﬁ—ﬂl(}g 7 (21)
where
Bl P e i (22)
BrnF 4D

A value of £ can be obtained from Equation (14) if £~
is a known value. Values of [/I, are read from the ob-
served curve at given values of E. When they are inserted
into the logarithmic term in Equation (21), a plot of log
1.11[1 — (I/1)X1 + e€%)] — log 1/1, against E becomes
a straight line. The slope provides B and the intercept
gives E* or £° through Equation (22). Abe et al. [54]
evaluated the kinetic parameters by this method under
the steadv-state current.

Other Electrochemical Techniques

Square-wave voltammetrv of Ostervoung's type, which
has a large pulse amplitude and a fast sweep rate on the
base potential, is a rapid and highly sensitive analytical
tool [55]. When the potential excitation of the square wave
is applied to the disk electrode, the decay of the current
response competes with the steadv-state current. Whelan
et al. [20] investigated the competition, theoretically and
experimentally, and found that the voltammogram is in
a bell shape, regardless of electrode geometry. Under
the convenient square-wave conditions (square-wave
amplitude nAE,,, = 50 mV, pulse step nAE, = 10 mV at
25°C), the peak of the difference current A, is ex-
pressed as

Al, = nFc*a*N/nD [1,, (1.69V D7, /a
+ 1.06 + 0.25 exp (—1.6 VD7./a)] (23)

where 7., is the square-wave period. It has been proved
theoretically that all the dimensionless square-wave vol-
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tammogram of the reversible reaction have the identical
bell shape whatever geometry the electrode has [36].

Although chronopotentiometry was not in practical
use until recently, it is a good example to understand
the time variation of the nonuniform current distribu-
tion. The current density is uniform immediately after
the imposition of the current /. It varies with the time
toward the distribution given by Equation (9). Aoki et
al. [19] made the theoretical analysis in the chronopo-
tentiometrv and expressed the ratio of the transition time
at the disk electrode, 7, to that at a large electrode
1w (= (V7@ /2)nF(ma®)c*\/D}/I) as the following equa-
tion:

v TM" Ted = (24)
0.837 — 0.632(1/1.) + \/ 0.400(//L)* + 0.206(1/1.) — 0.565
1={IlLE)

where it holds for //I, > 1. When 1 < [/I. < 1.1, the
transition time gets verv long. As [/I, — 1, the transition
time cannot be observed, and hence, the potential tends
to a steadyv-state value.

Effects of Electric Migration

A significant advantage of the ultramicrodisk electrode
is a possibility of controlling the potential, even in the
highly resistive solution, without a loss of accuracy. The
solution resistance of 1 M{2 for the current of 10 nA pro-
vides only 10 mV of the IR drop. It should be noted,
however, that this estimation is only valid for the poten-
tial shift but that the migration effect (grad ¢) in Equa-
tion 2 is not taken into account. Bond et al. [33] solved
approximatelyv the diffusion equation complicated by the
migration for a given electrode reaction. Amatore et al.
[56] have demonstrated that the migration does not cause
large distortion of the voltammogram when the initial
charge of the electroactive species is different from the
electron number of the charge transfer. Oldham [32] has
pointed out from rigorous theoretical analysis that the
migration effect is strongly dependent on the charge of
the electroactive species. Baker et al. [57] solved the
nonlinear ionic transport equation by integral transfor-
mation on the assumption that the supporting electro-
lytes distribute exponentially with respect to the poten-
tial. Since a level of the nonlinearity in the mass transport
equation varies with the charge of the electroactive spe-
cies and supporting electrolytes, a systematic approach
is so difficult that each experimental system requires each
solution of the boundary value problem.

CYLINDER ELECTRODE

Most diffusion problems at the cvlinder electrode can be
solved rigorously in the same manner as at a large planar
electrode if the exponential functions at the planar elec-
trode are replaced by the Bessel functions. The theo-
retical simplicity of the cvlinder electrode is due to con-
centric  equiconcentration contours and the uniform
current density at the electrode surface. “A thin elec-

trode used in this section denotes a cylinder electrode
ca. 6-10 pm in diameter, such as a carbon fiber elec-
trode.

Chronoamperomelric Curves

By applying Jaeger and Clarke’s approach [21] to the dif-
fusion problems at the cylinder electrode in radius a,
the diffusion-controlled limiting current j,; is expressed
by [58]

da _Z,f exp [~ 6] (25)
nFe*D 6% ), xfJo(x)* + Yo(x)*} -
—I +1 Ve +‘iI 0.1478* + 0.203¢° for@<0.18 (26)
sl —— 01478 + 0. +...for : 2
Vae 2 4z 8
> > 2,624
L4 + : ~ for®> 1200 (27)

In(40)— 2y {In(48)—2yF {In(48) — 2P

where 8 = Dt/a” and ¥ (= 0.57722) is Euler's constant.
Since Equations (26) and (27) are not a Tavler expansion
but an asymptotic expansion, the summation is made up
to the term of which the absolute value is minimum. A
uniformly convergent expansion valid for anv value of 8
has not been obtained vet. Two curves for Equations (26)
and (27) are not overlapped in the wide domain 0.18 <
# < 1200, which includes the domain 2 < 8 < 400 in
the convenient measurement time (0.05 < ¢ < 10 s) at
the thin electrode. Aoki et al. [22] obtained an empirical
equation that was valid for # < 10° by numerical inte-
gration of Equation (25):

Ja® [ @ o >
( = f(r)) + 0.422

nkFc*D \/ 78

- 0.0675 log 6 + 0.0058 (log 6 — 1.47)° (28)
where "= denotes "+ for log @ > 1.47 and "—" for
log 68 < 1.47.

For a long time electrolysis, the current shows log-
arithmic dependence of the time. The current observed
experimentally at the thin electrode looks like the steady
state at 5 < ¢ < 10. It is thus called the quasi-steady state
current. It does not tend to zero within a conventional
measurement time. Since j,a has little dependence on
a, the total current is approximately proportional to a.

The variation of (a/D)f(¢) in Figure 2 for Dt/a’ <
0.1 is just between curves at the ultramicrodisk electrode
and at the planar electrode, indicating that the effect of
the lateral diffusion is a half of the point electrode (shown
in line 4 of Table 1),

Linear Sweep Voltammeltry

Substituting Equation (28) into Equation (5) and using
the condition of the potential sweep, the analytical
expression of linear sweep voltammogram can be de-
rived [59] as in the linear-sweep voltammetry section. The
voltammogram is characterized bv p, defined bv Equa-
tion (16). As values of p decrease, the voltammogram
varies from a peaked shape art a large electrode into the



quasi-steady state wave. The peak current density j, is
empirically given by

nFctav ([}.446
RT

0.335)

o (29)

Jo =

The plot of the peak current for p > 0.1 against v
(Figure 2) falls approximately on a straight line. The total

k current at the thin electrode has a linear relation
with @' "%, indicating that it is roughly linear with a
and is almost independent of v. The behavior is similar
to that of the ultramicrodisk electrode rather than that
of a planar electrode.

1

Current-Potential Curves Complicated with
Charge Transfer Reactions

Carbon fiber electrodes often change the overpotential
with the thermal, the chemical, and the electrochemical
treatment. A measure of the overpotential is the differ-
ence berween the anodic and the cathodic peak poten-
tials of redox voltammograms. A more quantitative ap-
praisal is kinetic parameters of the charge transfer [60].

In order to obtain the kinetic parameters by the use
of the cvlinder electrode, Aoki et al. [61] presented the
analvtical expression for the current-potential curves in
the normal pulse mode. The current-potential curve for
the Butler-Volmer equation has the following two pa-
rameters: @ = Dt/a’ and (a/DXk + k) (= (a/D) k (1
+ €7*)). In addition, the modified log-plot technique has
been proposed on the basis of the theoretical curves.
The current-potential curves at the thin electrode are ap-
proximately subjected to the equation

23RT k%a (/72

I -
BnF 8 094D {1 — (/i )1 + e P>
(30)

where j, is the diffusion controlled-current density given
by Equation (28) and 7 is the current density at E. If val-
ues of log (j/j») {1 — (/i1 + € )} ™ are plotted
against E for known values of E¥ and j,, they fall on a
straight line of which the slope and intercept provide,
respectively, values of B and £ .

Cyclic voltammetry is more convenient than the pulse
techniques because of readily available instruments and
partly because of fewer parameters for working. Aoki and
Kaneko [62] have explored a technique of estimating the
rate constant from the voltammetric peaks. The voltam-
mogram is expressed as a function with the two param-
eters p (= \V/nFd?v/RT) and k* \/RT/nFDv. For the to-
tallv irreversible case at the thin electrode, the anodic
peak potential £, is given by

1.80VB log (pVB)
14 + pVB |

+ 1.6 — 23 log ?ﬁ] (31)

E=F" +

RT

E,,=E" + [
BnF
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The potential difference between the anodic peak and
the cathodic peak for B = a = 0.5 is expressed by

RT[?-?,D log (0.71p)
nF 20+ p

Ep,a = Ep.c =
E*a
+ 6.4 — 9.2 log ——D ] (32)

These two equations are convenient for the guantitative
appraisal of the activation of carbon fiber electrodes [60].

Other Electrochemical Techniques

All the theoretical approaches developed in the classical
polarography can be modified to the cvlinder electrode
because the flux and the concentration at the electrode
are expressed in a closed form. The example is an ap-
proach to the catalytic current with the rapid second-
order reaction. This has been applied to the evaluation
of the second-order reaction rate constant of Fe(edta)
with H,O, [63].

Selection of the pulse parameters in pulse voltam-
metry makes an influence on the diffusion-limiting cur-
rent if the concentration profile immediately before a
given pulse is disturbed by the preceding pulse elec-
trolysis. In the normal pulse mode, the current respond-
ing to each pulse is independent of the preceding cur-
rents within 5% errors when [pulse width| < [duration
between pulse]/10 [64] and is given by Equation (28).
On the other hand, the current in the differential pulse
mode has minor effects of the preceding pulses because
the recorded current is the difference from the base cur-
rent. The peak current for [pulse width] < [duration be-
tween pulse]/3 does not vary with the preceding elec-
trolysis [64]. The peak height is then given by Equation
(28) multiplied by {exp (nFE,/RT) — 1}/{exp (nFE./
RT) + 1}, where E,, is the potential height of the pulse.

BAND ELECTRODE

Characteristic of the band electrode is that the diffusion
layer develops from a plane parallel to the electrode sur-
face into a concentric plane centered at the correspond-
ing line electrode. The current density distributes non-
uniformly and is especially infinite at the edge of the
electrode. This behavior is similar to that of the ultra-
microdisk electrode. Because of the nonuniform current
distribution and the nonsteady-state current, classical
theoretical evaluation of the current has not been pre-
sented to our knowledge until attention was paid to ul-
tramicroelectrodes.

Chronoamperometric Curves

The analytical expressions for the current-potential curves
were derived by the Wiener-Hopf technique, combined
with some integral transformations. The current at a short
time, derived by the Fourier transformation, is ex-
pressed bv [65]

I= ch*D.{:{—l—- +1- } (33)

/w6
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where 6 = Dt/uw’, w is the width of the electrode, and
b is the length of the electrode. Equation 33 is valid for
6 < 2 within 5% errors. The second term always appears
at anv electrode with edges [23]. The third term is of the
order of *. The long time behavior has been obtained
by the use of the Kontrovich-Levedev transformation to
be expressed by [24]

-}

I—I oy 2—5 _+_ 2—|3x
I=2mnFc*Db | e ™ = .
D {In (x/64) + 29} + =
1 0.577 1.512
= Zﬁmﬁ:*ﬂb{ = e ok }
In@+3 (Iné@+3y (Iné+3)
(34)

It is of interest to compare the behavior at the band
electrode with that at the hemicvlinder electrode. From
Equations (27) and (34), significant terms at the band
electrode and the hemicyvlinder electrode are, respec-
tivelv, 27r/[In (Dt/w”) + 3] and 27/[In (4Dt/a’) — 0.6664).
The correspondence @ — w/4 between the two elec-
trodes proposed by Szabo et al. [66] is valid as rough
estimation.

In order to represent the two expansions as a closed
form, the empirical equation has been derived: [67]

nFc'Db Ef w

1 [ 9.90
= —— + 097 — 1.10 exp

W In 115?&]] (35)

This is valid for 8 < 10° and has been verified experi-
mentally [67] and numerically by the polynomial tech-
nique [68,69]. The curve of f{z) for w = 2a is shown in
Figure 2. Although the variation is similar to that of the
cvlinder electrode, fir) for Dt/a* > 1 is larger by a con-
stant value than that for the cylinder electrode. The en-
hancement of the current is due to the edge effect.
Chronoamperometry at the band electrode shows
better reproducibility than that at the cylinder electrode.
This is probably ascribed to a support of the band elec-
trode, which suppresses disturbance of the diffusion layer.

Linear Sweep Voltammelry

When the method described in the linear-sweep voltam-
metry section is applied to Equations 5 and 35, the
expression for the linear sweep voltammetrv can readily
be obtained [70]. The voltammetric shape is almost the
same as thart at the cvlinder electrode. From the numer-
ical calculation of the voltammograms, the peak current

I, is expressed by
61
¥ } (36)
1+ 10.9°

I, = nFc*ﬂb{D,diaEJp + 0.713p"'* +

where p = VﬂFw:v;’RTﬂ. It is approximately propor-
tional to v"* at a very thin electrode and at a very slow
sweep rate. Comparing the power (0.054) with that of
the cvlinder electrode (0.075) in Equation 29, the vol-

tammogram at the band electrode is closer to the steady-

state current than that at the cylinder electrode, as shown
in Figure 3.

In order to estimate the miniaturizing effect at the
band and the cvlinder electrode, we obtained the rela-
tion between w and @ at a common value of the peak
current. Equating Equation 35 with Equation 29 multi-
plied by thE‘ qurf:af:e area, extracting a numencallv for v
= 50 mV s = 25°C,and D = 107> cm® 57, we have
2a/cm = {}{}2? (w/cm)"™, or w/(2a) = 3.3 and 2.8,
respectively, for w = 107" ¢m and 107° cm. With a de-
crease in w, the characteristics of the line electrode are
manifested more strongly than the cvlinder electrode.

DISK-ARRAY ELECTRODE

The disk-array electrode is an assembly of many disk
electrodes inlaid on a planar insulator. The current at a
short time is just NV times of the current at each disk
electrode, where N is the number of disks. The growth
of the hemispherical diffusion layer causes the overlap
with the neighboring diffusion laver. Further overlap
makes the diffusion laver a rough plane parallel to the
insulator. Then the current looks as if it might come from
not only the disks but also the insulator. Thus, a feature
of the array electrodes is interplay berween the elec-
trodes and the insulator.

In order to make quantitative analysis of the time
variation, Gueshi et al. have proposed a model with ho-
nevcombed unit cells, each being assumed to be a cyl-
inder [27]. When a disk electrode is on the center of the
unit cell B, in radius (Figure 1D), the boundary condi-
tion Dac/ar = 0 at »r = R, makes each growth of the
diffusion layer independent. This type of the diffusion
problem, however, has not been solved vet. The diffi-
culty lies in the radial diffusion in the finite domain.

Gueshi et al. solved, approximately, this problem by
averaging the radial diffusion [27] The initial boundary
value problem results in formally the classical diffusion
problem associated with the first-order preceding reac-
tion. Letting 6, be a fraction of the insulator, the chro-
nopotentiometric current / can be related with the tran-
sition time 7, through the following relation:

/5
N = ?w nFACND

\/ 78
- T ef (Virl (37)
2\ I(1 — 6,)

where

D 2
| =— = 38
R5 6,1 —8) In{l +027(1 — &;) 2 G

When [ is verv large or when the thickness of the dif-
fusion laver is smaller than the disk, it follows that

INT /(N7 /2 mFc*AND = 1 — 6,,. That is, onlv the geo-
metrical area of the electrode participates in the elec-




trode reaction. Conversely, for a long transition time,
Equation 37 becomes
78,

\/'_
A s A /D = /
! 2VI(1 - ;)

where I'\V/7, is not constant but varies linearly with 7.

Expressions for the chronoamperometric curve are
more complicated. At a short time electrolysis, the Cot-
trell current flows corresponding to the geometrical area
of the disks. The current for a long time is also Courel-
lian with respect to the time, but the magnitude of the
current corresponds to the area involving the insulator,
as if the insulator might work as an electrode.

This basic approach has been applied to linear sweep
voltammetry [71] and the faradic impedance technique
[72]. The digital simulation in the present model has
provided more accurate results [73,74].

(39)

BAND-ARRAY ELECTRODE

The band-arrav electrode is intriguing in that each band
electrode is addressable in potential. Wrighton’s group
presented a concept of a chemical transistor by modi-
fving the band-array electrode with functional redox
polvmers [75,76). Most band-array electrodes have been
fabricated by photolithographv [75,77].

The interesting, addressing technique is to apply two
potentials to every other band electrode alternately. This
is called an interdigitated array (IDA) electrode [78]. When
one group of the band electrodes is an anode and the
other is a cathode, the steady-state current can be ob-
served [79] under the condition that the anodic current
is equal to the cathodic one in magnitude. The steady-
state current has been well investigated [28] both theo-
retically and experimentally. The basic theoretical ap-
proach is described below.

Since the IDA is regarded as an assembly of the line
electrodes, the diffusion occurs in the two-dimensional
space. In the repeating unit cell including a half of the
anode and a half of the cathode, the two-dimensional
Laplace equation holds for the concentration of the elec-
troactive species. Applving the Schwarz-Christoffel trans-
formation to the Laplace equation reduces the cell ge-
ometry to the parallel anode and cathode with the same
sizes. In the transformed cell, the current density is uni-
form. Transforming inversely the current density vields

the real current 7 at the IDA in the following form:
I = 2mbnFc*DK(1 — q)/K(g) (40)

where m is the number of the anode or cathode band
electrodes, b is the length of the band, K is the complete
elliptic function [80], and g is given by

4 sin (7w, /2w,,)

" {1 + sin (/2w )f

q (41)

Here, w, is the gap width between the anode and the
cathode, and w,, is the sum of w, and the common width
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of the anode or the cathode. Equation 40 is approxi-
mated as

[ = mbnFc*D{0.637 In (2.55w,./w,)
= 01w, /we)}  (42)

When w, is larger than a few micrometers, the an-
odic current is not identical with the cathodic current
because of insufficient overlap of the diffusion laver. Thus,
a key of establishing the steadv state is to make the gap
small.

Niwa et al. constructed an IDA-like electrode cor-
responding to w, = 0.5 um by separating the anode and
the cathode with a thin film which works as the gap [81].
The steady-state current at this electrode has been nu-
merically evaluated by the boundary element method [82]

The current density under the steady state is en-
hanced owing to the redox cvcle. Thus, it is influenced
bv the kinetics of the charge transfer rate, of which the
current-potential curve has been obtained theoretically

183].

MISCELLANEOUS ELECTRODES
Ring Electrode

The ring electrode is often fabricated as a cross section
of an insulating rod on which metal is deposited in a
ultrathin film. It is thus a thin ring and has a very long
edge, which may provide an intense edge effect.

Since there is a steadyv-state current at the ring elec-
trode, the boundary value problem results in solving the
three-dimensional Laplace equation. A similar problem
has already been solved fortunately for the electric ca-
pacity of a ring condenser [40,41], and hence, the solu-
tion could be directly applied to the diffusion current
[42]. The current at the ultrathin ring electrode with a
in inner radius and 4 in outer radius is expressed by

7(a + d)
In 16(d + a)/(d — a)

Since the current varies slightly with the thickness of the
ring, it depends almost linearly on the radii rather than
the area of the electrode, as is the case for the ultra-
microdisk electrode. Owing to the large edge effect, the
current distribution is largely nonuniform. The current
estimated on the assumption of uniform distribution,
nevertheless, agreed well with Equation 43 [84,85], prob-
ably because of the ultrathin ring. Transient behavior was
predicted analvtically [84] and numerically [86].

I = nFc*D (43)

Recess Electrode

In the recess electrode, an actual electrode is located at
the bottom of a hole or a ditch. Since the recess part
blocks convection of the electroactive species near the
electrode, the current is almost independent of the con-
vection. The recess electrode is a promising detector of
flow injection analysis and liquid chromatography. If the
convection is vigorous outside of the recess and van-
ishes within the recess, the steady-state current is essen-
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tially the same as that of a thin layver cell. Let L be the

dep

th of the recess. Then the steady-state current is ex-

pressed by

I = nFc*AD /L (44)

Simple geometry of the electrode is a disk [87] or a band
[88]. Theory of linear sweep voltammetry [89] and com-
plication of the charge transfer rate [90] developed in
the thin laver cell can be directly applied to the recess

electrode.
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